

Physics

PTCOG-AO2025-ABS-0166

Development of a 3D FLASH Carbon-Ion Irradiation System for Animal Studies

Mutsumi Tashiro¹, Shunsuke Inagaki², Naoto Urabe², Tanny Bepari³, Masao Nakao¹, Ken Yusa¹, Yukari Yoshida¹, Tatsuya Ohno¹

¹Gunma University Heavy Ion Medical Center (GHMC), Japan. ²Graduate School of Medicine, Gunma University, Japan. ³Interfaculty Initiative in Regulatory Science of Biomedical Science and Engineering, Gunma University, Japan.

Background / Aims:

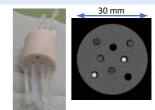
We propose the "Carbon Knife" to target millimeter-scale lesions & nonneoplastic targets. This microbeam concept integrates 3D scanning irradiation planning, ultra-high dose-rate (UHDR) delivery, and 3D range modulator (3D-RM) for small-animal research.

Subjects and Methods:

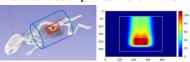
1. CT-Stopping Power Ratio (SPR) Calibration

- 30 mm phantom for animal CT.
- SPRs benchmarked for olive oil, lard, milk, pork.

2. 3D Scanning Irradiation Planning


In-house software developed. *

3. UHDR Delivery


- RF-knockout and IF-converter adjusted for both conventional & UHDR beam modes.
- Dose monitor linearity verified up to 300 Gy/s.
- Advanced Markus chamber stability verified.

4. 3D Range Modulator (3D-RM)

• 3D-printed ridge filters and range compensators shaped SOBPs for arbitrary lateral positions.

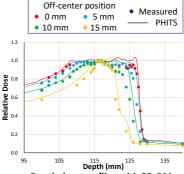
SPR calibration phantom for animal CT

Irradiation planning*

Results:

- SPR accuracy: CT-based SPRs agreed within 5% of measured values.
- Planning accuracy: Measured doses matched plans within a few %. *
- UHDR performance: Reached 100 Gy/s (10 Gy, 20×20 mm², 290 MeV/u plateau) and 200 Gy/s (30 Gy, 10×10 mm², 10 mm SOBP). Dose monitor linearity maintained.

· 3D-RM fidelity: SOBP widths slightly blurred by neighboring ridge height differences and multiple scattering; dose profiles matched PHITS.



Target: φ30mm, SOBP_{max} =20mm

3D-RM (L) designed for a target (R)

Typical UHDR irradiation conditions

290 MeV/u	Field(mm)	LET(keV/μm)	Dose(Gy)	Dose Rate(Gy/s)
Mono	□14	13	30	222
	□20	13	10	112
	□10	70	18	287
SOBP 10mm	□10	SOBP Center 80	34	229
	□20		24	91
	□30		11	43

Depth dose profiles with 3D-RM

Summary / Outlook:

Key components are currently being tested within a 3D carbon-ion irradiation platform for small-animal studies, aiming to enable high-precision radiobiology experiments.